1. 常见规则说明

1.1. 共边平行路

一个区域内,所有邻格的公共边互相平行

此类区域形似石板铺成的"路"

共边平行路

1.1.1. 棱

魔方中的共边平行路

棱

  • 棱的编号
    • 方向:
    • 数字:从中心点向外,分别为 1,2,3...

编号棱

1.2. 上斜线

左下到右上的斜线区域

1.2.1. 上对角线

上对角线

1.3. 下斜线

左上到右下的斜线区域

1.3.1. 下对角线

下对角线

1.4. 对角线

经过天元,连接对角的区域。 主要包括:

1.4.1. 对角线约束

对角线上的数字不重复。

对于 9 阶数独,对角线满足:区域内1~9填充

1.4.2. 反对角线约束

对角线上的数字必重复。

对于 9 阶数独,反对角线满足:区域内仅有 3 种数字

1.5. 1to9填充

  • 单一区域内填入 1-9
  • 每个数字恰好出现 1 次。

1.6. 1toG填充

  • 单一区域内填入 1-9A-G
  • 每个字符恰好出现 1 次。

1.7. 1to8填充

  • 单一区域内填入 1-8
  • 每个数字恰好出现 1 次。

1.8. 1to6填充

  • 单一区域内填入 1-6
  • 每个数字恰好出现 1 次。

1.9. 9选6填充

  • 1-9 中挑选 6 个数,单一区域内填入
  • 每个数字恰好出现 1 次。

1.10. 全盘9选6填充

1-9 中挑选 6 个数,全盘仅出现这 6 种不同的数字。

1.11. 1to9不重复

  • 单一区域内填入 1-9
  • 每个数字出现 0 或 1 次。

1.12. 1to8不重复

  • 单一区域内填入 1-8
  • 每个数字出现 0 或 1 次。

1.13. 0to9不重复

  • 单一区域内填入 0-9
  • 每个数字出现 0 或 1 次。

1.14. 摩天楼

Towers

摩天楼规则需要一定的空间想象力,对以下内容进行对应理解:

  • 数独盘面 → 平地
  • 数独盘面内的数字 → 位于该位置上的楼的层数
  • 9 宫摩天楼数独的解 → 平地上有 81栋高低不同的楼,其中 9 层高的楼有 9 栋,8 层高的楼有 9 栋,...,1 层高的楼也有 9
  • 摩天楼观测提示数 → 从提示数所在(观测位,观测方向)上,可以看到的楼栋数(即摩天楼观测数
  • 摩天和提示数 → 从提示数所在(观测位,观测方向)上,可以看到的部分楼,摩天和是这些楼的总层数

注意:存在高楼挡住矮楼,导致矮楼无法被看到的情况。

1.15. 摩天楼观测数

在摩天楼数独规则下,在指定(观测位,观测方向)上,可以看到 N 栋楼。摩天楼观测数是可以看到的楼栋数,即N

1.16. 摩天和

在摩天楼数独规则下,在指定(观测位,观测方向)上,可以看到 N 栋楼。摩天和是这 N 栋楼的层数总和。

举例:

  • 盘面信息:
    • A 行的数字从左到右为:381654729
    • 盘面
  • 观测信息:
    • A0(A1 左侧),向右观测
    • 观测位
  • 观测结果:可以看到 3 栋楼,分别是 3 层楼(A1)、8 层楼(A2)、9 层楼(A9)
    • A1(3层楼):可以看到
    • A2(8层楼):可以看到,8 层楼高于 3 层楼(8>3)
    • A3(1层楼):无法看到,被 8 层楼挡住(1<8)
    • A4(6层楼):无法看到,被 8 层楼挡住(6<8)
    • A5(5层楼):无法看到,被 8 层楼挡住(5<8)
    • A6(4层楼):无法看到,被 8 层楼挡住(4<8)
    • A7(7层楼):无法看到,被 8 层楼挡住(7<8)
    • A8(2层楼):无法看到,被 8 层楼挡住(2<8)
    • A9(9层楼):可以看到,9 层楼高于 8 层楼(9>8)
    • 视角转换
  • 结论:此例中,A0 位向右观测的
    • 摩天楼观测数3
    • 摩天和20=3+8+9
    • 观测数

1.17. 邻格

两格拥有公共的点,则互为邻格

对于标准 9 宫数独:

  • A1,A9,I1,I9:有 3 个邻格
  • {A,I}{2-8}{B-H}{1,9}:有 5 个邻格
  • {B-H}{2-8}:有 8 个邻格

1.17.1. 共边邻格

两格拥有公共的边,则互为共边邻格

对于标准 9 宫数独:

  • A1,A9,I1,I9:有 2 个共边邻格
  • {A,I}{2-8}{B-H}{1,9}:有 3 个共边邻格
  • {B-H}{2-8}:有 4 个共边邻格

1.17.2. 对角邻格

两格拥有公共的点,但不存在公共的边,则互为对角邻格

对于标准 9 宫数独:

  • A1,A9,I1,I9:有 1 个对角邻格
  • {A,I}{2-8}{B-H}{1,9}:有 2 个对角邻格
  • {B-H}{2-8}:有 4 个对角邻格

对角邻格 等价与 士步格

1.18. 连续

如果两格满足连续约束,说明这两格数字差为 1

1.18.1. 正交连续

如果共边邻格的公共边上存在标记,说明这两格数字差为 1

1.18.2. 斜连续

如果对角邻格的公共顶点上存在标记,说明这两格数字差为 1

1.19. 黑白点

如果共边邻格的公共边上存在黑白点标记,说明这两格数字大小满足:

  • 黑点:两格数字是两格关系
  • 白点:两格数字差为 1(即连续

注意:12之间可能标记黑点,也可能标记白点

1.20. 数比

两格之间存在大小标志,说明这两个数字满足以下情况之一:

  • =:两格数字相同
  • >:开口方向格 大于 闭口方向格
  • :斜边所在格 大于 直角方向格

1.21. 无缘

对于数字 A

  • 盘面内任意一个数字A,它的邻格都不是数字 A

在标准数独中,等价于:

  • 盘面内任意一个数字A,它的对角邻格都不是数字 A
  • 盘面内任意一个数字A,它的士步格都不是数字 A

1.22. 士步

两格的横向距离和纵向距离都是1,则互为士步格。

士步格等价与 对角邻格

1.23. 马步

两格的横向距离和纵向距离,一个是1,一个是2,则互为马步格。

对于标准 9 宫数独:

  • A1,A9,I1,I9:有 2 个马步格
  • {A,I}{2,8}{B,H}{1,9}:有 3 个马步格
  • B2,B8,H2,H8,{A,I}{3-7}{C-G}{1,9}:有 4 个马步格
  • {B,H}{3-7}{C-G}{2,8}:有 6 个马步格
  • {C-G}{3-7}:有 8 个马步格

1.23.1. 马步约束

两格互为马步格,且数字相同

1.23.2. 马步中心

互为马步的两格的中点

1.24. 象步

两格的横向距离和纵向距离都是2,则互为象步格。

对于标准 9 宫数独:

  • {A,B,H,I}{1,2,8,9}: 有 1 个象步格
  • {A,B,H,I}{3-7}{C-G}{1,2,8,9}:有 2 个象步格
  • {C-G}{3-7}:有 4 个象步格

1.25. 前X和

盘外提示数 S:当前位置向盘内看,第 1 格为X,前 X 格和为S

1.26. 边框和

盘外提示数 S: 当前位置向盘内看,前 3 格的和为 S

1.27. 奇偶星

引用:

1.28. 骨牌

1 个骨牌占据 1 宫,每个骨牌包含 1-9 个骨牌点。

骨牌 1~9如下图所示: 骨牌

1.28.1. 1to9骨牌填充

  • 全盘填入 1-9 骨牌
  • 每个骨牌恰好出现 1 次。

1.29. 耳语线

  • 别名:German Whisper
  • 限制:线上相邻数字的差值必须 ≥ 5

1.30. 连续区间线

1.30.1. 连续区间限制

指定区域的数字恰好组成一个连续区间,但对顺序没有限制

1.31. 熵约束

1.31.1. 三格熵约束

三格满足熵约束,当且仅当 三格的数字恰好包含:

  • 1 个小数 123
  • 1 个中数 456
  • 1 个大数 789

1.31.2. 2x2熵约束

2x2的 4 格满足熵约束,其中数字至少包含:

  • 1 个小数 123
  • 1 个中数 456
  • 1 个大数 789

1.32. 熵线

  • 别名:Entropic
  • 限制:线的任何三个连续单元格都满足熵约束

1.33. 反熵线

  • 别名:Anti-Entropic
  • 限制:线的任何三个连续单元格都不满足熵约束

1.34. 模约束

三格满足模约束,当且仅当 三格的数字对 3 取模结果互异。 即恰好包含:

  • 1 个 147(模 3 余 1)
  • 1 个 258(模 3 余 2)
  • 1 个 360(模 3 余 0)

1.35. 模线

  • 别名:Modular
  • 限制:线的任何三个连续单元格都满足模约束

1.36. 计算框

计算框是盘面中由"指示圈"框定的若干个单元格。 一般在"指示圈"左上角存在提示数。

1.37. 杀手框

杀手框是一种特殊的计算框,框内单元格数字各不相同。

  • 别名:
    • Killer Cages

1.37.1. 杀手限制

  • 框内格子数字各不相同
  • 若存在提示数,即为框内单元格数字之和

1.38. 职业杀手框

职业杀手框是满足暗杀条件的杀手框

  • 别名:Contract Killer Cages

1.38.1. 职业杀手限制

  • 职业杀手框内,恰有 2 个单元格未被暗杀,其中
    • 上左格(上优先)值为R
    • 下右格(下优先)值为C
    • 职业杀手框的暗杀对象为 RC列单元格
  • 职业杀手框的暗杀对象互不相同
  • 若单元格被暗杀,其参与计算时值为 0

1.39. Psycho look-and-say cages

Psycho look-and-say cages 是盘面中由"指示圈"框定的若干个单元格。 在"指示圈"左上角存在提示数CX

  • 约定:
    • 指示圈包含单元格都是定位单元格
    • 每个定位单元格可通过以下方式指示唯一的目标单元格
      • 目标单元格位于第定位单元格.数字
      • 目标单元格定位单元格的宫内位置相同
  • 限制:
    • 框内单元格数字各不相同
    • 提示数CX表示:所有目标单元格中恰有 C 个 X

1.40. 箭

  • 箭尾:通过圆圈标记
  • 箭身:通过线段标记
  • 箭头:通过箭头符号标记

1.40.1. 箭限制

箭尾 = 箭身 + 箭头

1.41. 战争迷雾

  • 别名:Fog of War

初始状态下,盘面内的提示标记被迷雾覆盖,无法观察。

当满足以下条件时展示,可驱散迷雾:

  • 指示灯:可驱散当前格和周围邻格的迷雾
  • 填入数字正确的单元格:可驱散周围邻格的迷雾

results matching ""

    No results matching ""